Process industry on renewable electricity

Sikke Klein, February 2023 s.a.klein@tudelft.nl

Process industry on renewable electricity

CURRENT SITUATION

Process industry based on fossil fuels as energy input

- About 80% of energy consumed for heat generation
- Nearly all consumed (fossil) heat is cooled away at lower temperatures

FUTURE SITUATION

Process industry based on 100% renewable electricity, challenges:

- Variability of electricity supply
- Annual production volume/utilization rate of industrial asset

Content

- System analysis
- Typical design parameters for a fully electrical process industry plant
- Comparison of different design options & preliminary financials
- Actieplan efficiente en flexibele elektrificatie van de procesindustrie

System: industrial consumption of electricity coupled to renewable power generation

Variable renewable energy (VRE):

production by wind & solar

Back up energy:

alternative energy source in case of shortage of energy in the system. For example: natural gas, hydrogen or power from thermal generation

Industrial

production:

(load) by

industry

Components of system analysis

Assumptions:

- Virtual system, renewable generation of electricity and industrial consumption of electricity are considered as one system.
- All variables scaled with the annual average demand of electricity by the industrial installation (e.g. total annual demand = 8500 MWh: 1 MW during 8500 hrs)
- Constant annual industrial production volume
- Full foresight of renewable energy production
- In case of shortage of energy in the system: extra energy delivered from back up energy
- In case of excess of energy in the system: curtailment of renewable generation
- Back up energy to be minimized => target: fully renewable system
- Production = Intake of power, no penalty from flexible operation of the industrial installation
- Not limited by storage capacity of products and raw materials
- Not limited by transport capacity of electricity between generation and consumption
- Portfolio of 75% (MWh) off shore wind and 25% solar (MWh)

Renewable generation installed capacity utlization

Transport capacity
between renewable
generation and
industrial consumption

Production asset
Capacity
Flexibility

Energy storage
Size
Local/Central

Backup energy
Annual volume
Capacity

System analysis divided into two parts

(2) Excess of renewable energy:

- Extra production by extra intake of electricity
- Storing extra electricity into energy storage

(1) Shortage of renewable electricity:

- Demand side response & start/stop demand
- 2. Energy from storage
- 3. Back up energy

Shortage of renewable energy: Demand side response

NO START/STOP

Off take follows generation between min and max load

WITH START/STOP

Off take follows generation between min and max load

Average generation < min load (time scale > X) : off take stopped

Reduction of Back up Energy requirement by Flexibility, Start/Stop operation and Energy Storage

- Lower minimum load => strong reduction of back up energy requirements
- Start/stop further reduces back up energy, especially at higher minimum load
- Storage size 5-10 hr: reduces back up energy requirement significantly

Achieving the annual production volume Maximum capacity versus value of storage

DIRECT USAGE: MAXIMUM CAPACITY

Capacity industrial production: >140% of average annual demand level

INDIRECT USAGE: ENERGY STORAGE

Storage of circa 50 hours reduces required production capacity to 120%

Typical design parameters

Installed renewable power capacity >110%

Transport capacity
Capacity: Production
asset + Local storage
100%-200%

Energy storage:
4-50 hr
(> 250 hr required for base load)

Production asset: Capacity: 120%-150% Minimum 25%-75% (stops 2-50 / yr) Back up energy:
Balance with flexibility
and storage
(0%-25%)

Fully flexible operation

Semi baseload

Process industry on renewable electricity, Sikke Klein, February 2023

Comparison of different design options

Production of 1 MW_{th} of heat (8500 MWh/yr)

Annual production of 8500 MWh/a heat

Integral cost level comparison (CAPEX based) Total Costs of Heat Generation

- Heat Pump: 5000 EUR/kW_{e_in} COP=4
- Grid: 200 EUR/kW_e
- H₂toPower (retrofit)/H₂toheat (new):
 200 EUR/kW

- Heat storage: 25 EUR/kWh
- 5 year simple pay back time, no tax

Observations General

- Energy efficiency counts also with renewable energy
 heat pump solutions (open (MVR) and closed) far better than any e-boiler solution
 (two times as cheap, four times as much industry electrified, four time less transport and renewable electricity generation capacity)
 - => System optimum solution does not always coincide with "cheapest" end user solution
- (Large scale) storage is not cheap
 - => optimum combination of demand side management, storage and back up energy
- Electricity transportation is not for free
 - => storage as close as possible to 'problem causing' entity
- Not all renewable electricity will be used (circa 10% curtailment)

Obstacles for large scale industrial heat pump implementation

- Business case/Energy exposure
 - High costs of heat pump and due to integration
 - Still financially exposed to fossil fuels (forward power price closely linked to fossil prices)
- Technical:
 - Best (thermodynamic) solution in many cases: Process integrated heat pump
 - Partial redesign of plant
 - More complex operations
 - Availability electrical connection (although 4 times smaller than e-boiler)
- Knowledge of and experience with industrial heat pump technology
- Perception at end users

Gezamenlijk Actieplan efficiente en flexibele elektrificatie nodig?!

Industrie:

- Studie om naar 100% CO2 vrij te gaan op efficiente en toekomstbestendige manier
- Kijk verder dan (maatschappelijk) kostbare opties (waterstof en e-boiler) met name voor volgende toepassingen: kristallisatie, drogen, scheiding (destillatie), sterilisatie etc.
- Lange termijn commitment door investeren in installaties

Overheid:

- (SDE++/NIKI/...) Financiele regeling voor proces geintegreerde warmtepompen
- Beschikbaar maken nieuwe duurzame elektriciteit op kostprijsniveau aan efficiente elektrificatie (tender voorwaarde nieuwe wind- en zonneparken: levering aan industriele installaties met COP > 3 ?)
- Er zijn voldoende stokken (ETS, klimaatheffing, energiebelasting, energiebesparingsplicht ...)
- Overheid & Industrie: targets stellen:
 - In 2030: 5 000 000 ton CO2 besparing door 50% van warmtepomp potentieel in industrie te realiseren
 - Creeer voorsprong positie NL industrie
- Kennis: ontwikkeling, opleiding en kennisdeling
- Innovatie: flexibele warmtepompen en regelingen, complexe procesintegratie, opslag

WIE ZIET OOK NOODZAAK EN MOGELIJKHEDEN OM EFFICIENTE EN FLEXIBELE ELEKTRIFICATIE TE VERSNELLEN?

VRAGEN/OPMERKINGEN s.a.klein@tudelft.nl

Alternatief product met gelijk(waardig)e functionaliteit met geen/lagere CO2 emissie

Alternatief productie methode voor product met gelijk(waardig)e functionaliteit met geen/lagere CO2 emissie

Elektriciteit & Kracht

Kracht & elektrolyse: efficiency, flexibiliteit, gebruik restwarmte

Warmte:

Alternatieve productie methode

Elektrificatie kracht

Intern hergebruik en opwaardering warmte (incl WP)

Duurzame warmte:

(Opgewaardeerde) (externe) restwarmte (Opgewaardeerde) geothermie Zonthermie (met opslag)

E-heating (hybride/met opslag) Biomassa Verbranding E-fuels (incl waterstof)

Restwarmte levering extern

Energie

efficiency,

intern

hergebruik

warmte

